翻訳と辞書
Words near each other
・ Hermite ring
・ Hermite spline
・ Hermite's cotangent identity
・ Hermite's identity
・ Hermite's problem
・ Hermite–Hadamard inequality
・ Hermite–Minkowski theorem
・ Hermitian adjoint
・ Hermitian connection
・ Hermitian function
・ Hermitian hat wavelet
・ Hermitian manifold
・ Hermitian matrix
・ Hermitian symmetric space
・ Hermitian variety
Hermitian wavelet
・ Hermits of Saint William
・ Hermits of St. John the Baptist
・ Hermits of the Most Blessed Virgin Mary of Mount Carmel
・ Hermitude
・ Hermival-les-Vaux
・ Hermle
・ Hermle AG
・ Hermle Clocks
・ Hermleigh Independent School District
・ Hermleigh, Texas
・ Hermlin
・ Hermocrates
・ Hermocrates (dialogue)
・ Hermod (ship)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hermitian wavelet : ウィキペディア英語版
Hermitian wavelet

Hermitian wavelets are a family of continuous wavelets, used in the continuous wavelet transform. The n^\textrm Hermitian wavelet is defined as the n^\textrm derivative of a Gaussian distribution:
\Psi_(t)=(2n)^}c_H_\left(\fract^}
where H_\left(\right) denotes the n^\textrm Hermite polynomial.
The normalisation coefficient c_ is given by:
c_ = \left(n^-n}\Gamma(n+\frac)\right)^} = \left(n^-n}\sqrt2^(2n-1)!!\right)^}\quad n\in\mathbb.
The prefactor C_ in the resolution of the identity of the continuous wavelet transform for this wavelet is given by:
C_=\frac
i.e. Hermitian wavelets are admissible for all positive n.
In computer vision and image processing, Gaussian derivative operators of different orders are frequently used as a basis for expressing various types of visual operations; see scale space and N-jet.
Examples of Hermitian wavelets:
Starting from a Gaussian function with \mu=0, \sigma=1:
f(t) = \pi^e^
the first 3 derivatives read
:\begin
f'(t) & = -\pi^te^ \\
f''(t) & = \pi^(t^2 - 1)e^\\
f^(t) & = \pi^(3t - t^3)e^
\end
and their L^2 norms ||f'||=\sqrt/2, ||f''||=\sqrt/2, ||f^||= \sqrt/4
So the wavelets which are the negative normalized derivatives are:
:\begin
\Psi_(t) &= \sqrt\pi^te^\\
\Psi_(t) &=\frac\sqrt\pi^(1-t^2)e^\\
\Psi_(t) &= \frac\sqrt\pi^(t^3 - 3t)e^
\end


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hermitian wavelet」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.